The Lower Solimões River from the Chaos Theory Perspective (Deterministic Chaos)

Authors

DOI:

https://doi.org/10.33237/2236-255X.2021.3193

Keywords:

Non-Linear Analysis, Megarivers, Amazon Basin, Complexity

Abstract

The study of nonlinear dynamical systems has been receiving increasing attention from the scientific community. Chaos theory, developed in the early 1960s, seeks solutions for systems that were neither close to equilibrium nor to a periodic solution, thus discovering chaotic motion (irregular and aperiodic oscillations) on a strange attractor. This discovery was an advance for the analysis of hydrological dynamics, now considered a nonlinear system. Therefore, this article seeks to present, from the perspective of Chaos theory, potentialities for the hydrological analysis of a river system. For this, the fluvial dynamics and erosion and sedimentation processes were analyzed, in addition to understanding data of quota, water discharge and suspended sediments, seeking to understand the monthly means to predict the data from the perspective of Chaos theory. For this, the river dynamics and erosion and sedimentation processes were analyzed, in addition to understanding data of quotas, water discharge and suspended sediments, seeking to understand the monthly means to predict the data from the perspective of Chaos Theory. The results show that analysis of turbulent flows, in particular helical flows, and sediment transport and deposition processes is interesting from the perspective of Chaos for a short time scale, making it difficult to predict the results on a larger time scale. The use of monthly means to predict data phenomena of quotas, liquid discharge and suspended sediments is not indicated by the nonlinear dynamics of the data, however it is possible to predict the data on a short time scale. It was also observed that the larger the predicted time scale, the greater the chance of inconsistencies in the data, and the use for predictions, using the Chaos theory, greater than one year is not indicated.

Downloads

Download data is not yet available.

Author Biographies

Matheus Silveira de Queiroz, Universidade Federal do Amazonas (UFAM)

Graduado em Geografia pela Universidade do Estado do Amazonas (UEAM), pela Escola Normal Superior (ENS). Mestrado em Geografia em andamento na Universidade Federal do Amazonas (UFAM). Desenvolve trabalhos na área de Geomorfologia e Sensoriamento Remoto com ênfase nos seguintes temas: Sistemas Fluviais Amazônicos; Sistemas Fluviais em íreas urbanas; Morfotectônica (com ênfase na Neotectônica da bacia Amazônica); Erosão Fluvial (Terras Caí­das); Movimento de Massa. 

José Alberto Lima de Carvalho, Universidade Federal do Amazonas (UFAM)

Doutor pelo Programa "Ordenamento Territorial e Ambiental", da Universidade Federal Fluminense, Mestre pelo Programa Sociedade e Cultura da Universidade Federal do Amazonas e graduado em Geografia pela Universidade Federal do Amazonas. Professor Adjunto 3 do Departamento de Geografia da Universidade Federal do Amazonas, atuando na área de Geomorfologia Fluvial, Geografia Fí­sica da Amazônia, com ênfase em Hidrografia da Amazônia.

References

ALVES, A. C. Análise Multitemporal e Morfodinâmica no Entorno da Confluência do Rio Solimões com o Rio Negro. Dissertação (Programa de Pós-Graduação em Geografia, Universidade Federal do Amazonas – UFAM), Manaus, 2019.

BEST, J. L. Sediment Transport and Bed Morphology at River Channel Confluence. Sedimentology, v. 35, pp. 481-498, 1988.

DUNNE, T.; MERTES, L. A.; MEADE, R. H.; RICHEY, J. E.; FORSBERG, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol. Soc. Am. Bull., v. 110, n. 4, pp. 450-467, 1998.

FIEDLER-FERRARA, N.; PRADO, C. P. C. Caos: Uma introdução. Blucher: São Paiulo, 1994.

FILIZOLA, N. O fluxo de sedimentos em suspensão nos rios da bacia Amazônica Brasileira. ANEEL, 1999.

FILIZOLA, N. Transfert sédimentaire actuel par les fleuves amazoniens. Université Toulouse 3- Paul-Sabatier, Toulouse, France, 2003, 292 p.

FILIZOLA, N.; GUYOT, J. L. Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol. Processes, v. 23, n. 22, pp. 3207-3215, 2009.

FRANZINELLI, E. Caracterí­sticas morfológicas da confluência dos rios Negro e Solimões (Amazonas, Brasil). Revista Brasileira de Geociências, v. 41, n. 4, p 587-596, 2011.

HAKEN, H. Evolution of Order and Chaos in Physics, Chemistry and Biology. Springer Series in Synergetics, vol.17, Springer Verlag, Berlin, 1982.

HANNAN, E. J. A test for singularities in Sydney rainfall. Austr Jour Phys, v. 8, n. 2, pp. 289–297, 1955.

HENSE, A. On the possible existence of a strange attractor for the southern oscillation. Beitr Phys Atmos, v. 60, n. 1, pp. 34–47, 1987.

HURST, H. E. Long-term storage capacity of reservoirs. Trans Am Soc Civil Eng, v. 116, pp. 770–808, 1951.

HURST, H. E. Methods of using long-term storage in reservoirs. Proc Inst Civil Eng, v. 1, pp. 519–543, 1956.

JAYAWARDENA, A. W.; GURUNG, A. B. Noise reduction and prediction of hydrometeorological time series: dynamical systems approach vs. stochastic approach. J Hydrol, v. 228, pp. 242–264, 2000.

KEMBER, G.; FLOWER, A. C. Forecasting river flow using nonlinear dynamics. Stoch Hydrol Hydraul, v. 7, pp. 205–212, 1993.

KHATIBI, R., SIVAKUMAR, B., GHORBANI, M. A., KIÅžI, Ö., KOCAK, K., ZADEH, D. F. Investigating chaos in river stage and discharge time series. J Hydrol, v. 414, n.415, pp. 108–117, 2012.

LARAQUE, A.; FILIZOLA, N.; GUYOT, J. L. Variations spatio-temporelles du bilan sédimentaire dans le bassin Amazonien Brésilien, í partir d"™un échantillonnage décadaire. IAHS-AISH Publ, pp. 250-258, 2005.

LATRUBESSE, E. M. Patterns of anabranching channels: The ultimate end-member adjustment of mega rivers. Geomorphology 101, pp. 130–145, 2008.

LATRUBESSE, E. M.; STEVAUX, J. C.; SINHA, R. Tropical Rivers. Geomorphology, 70, pp.187–206, 2005.

LE CAM, L. A. A stochastic description of precipitation. In: NEWMAN, J. (Org.). Proc 4th Berkeley symp mathematics, statistics, and probability. University of California Press, Berkeley, pp. 165–186, 1961.

LISI, F.; VILLI, V. Chaotic forecasting of discharge time series: A case study. J Am Water Resour Assoc, v. 37, n. 2, pp. 271–279, 2001.

LORENZ, E. N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, v. 20, pp. 130-141, 1963.

MANDELBROT, B. B.; WALLIS, J. R. Noah, Joseph and operational hydrology. Water Resour Res, v. 4, n. 5, pp. 909–918, 1968.

MERTES, L. A.; DUNNE, T.; MARTINELLI, L. A. Channel-floodplain geomorphology along the Solimões-Amazon River, Brazil. Geol. Soc. Am. Bull., v. 108, n. 9, pp. 1089-1107, 1996.

MOLINIER, M.; GUYOT, J. L.; OLIVEIRA, E.; GUIMARíES, V. Les régimes hydroiogiques de l"™Amazone et de ses affluents. IAHS Publ, pp. 209-222, 1996.

MORENO, U. F. Teoria de Bifurcações e do Caos Aplicadas í análise da Estabilidade de Tensão. Dissertação (Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Santa Catarina), Florianópolis, 1997.

MOSLEY, M. P. An Experimental Study of Channel Confluence. Journal of Geology, v. 84, pp. 535-562, 1975.

PHOON, K. K.; ISLAM, M. N.; LIAW, C. Y.; LIONG, S. Y. A practical inverse approach for forecasting of nonlinear time series analysis. ASCE J Hydrol Eng v. 7, n. 2, pp.116–128, 2002.

POINCARÉ, H. Les Methodes Nouvelles de la Mécanique Celeste. Vols. 1-3, Gauthier-Villars, Paris, 1899.

PRIGOGINE, I. As leis do Caos. Editora Unesp: São Paulo, 1993.

QUEIROZ, M. S.; TOMAZ NETO, A. G. A Influência dos Rios Negro e Solimões nas Comunidades Rurais Ribeirinhas no Municí­pio de Iranduba - Amazonas. In: PINHEIRO, L. S.; GORAYEB, A. (Org.). Geografia Fí­sica e as Mudanças Globais. 1ed.Fortaleza: Editora UFC, p. 01-12, 2019.

QUEIROZ, M. S.; ALVES, N.S. Conditioning Factors of "Terras Caí­das" in Lower Solimões River – Brazil. Caminhos de Geografia, v. 22, n. 80, p. 220–233, 2021.

QUEIROZ, M. S.; SOARES, A. P. A.; TOMAZ NETO, A. G. Comunidades rurais ribeirinhas e as águas do rio Solimões no municí­pio de Iranduba – Amazonas. Revista Brasileira de Meio Ambiente, v.4, n.1.108-119, 2018.

RODRIGUEZ-ITURBE, I.; POWER, F. B.; SHARIFI, M. B.; GEORGAKAKOS, K. P. Chaos in rainfall. Water Resour Res, v. 25, n. 7, pp.1667–1675, 1989.

SHANG, P.; NA, X.; KAMAE, S. Chaotic analysis of time series in the sediment transport phenomenon. Chaos Soliton Fract, v. 41, n. 1, pp. 368–379, 2009.

SHARIFI, M. B.; GEORGAKAKOS, K. P.; RODRIGUEZ-ITURBE, I. Evidence of deterministic chaos in the pulse of storm rainfall. J Atmos Sci, v. 47, pp.888–893, 1990.

SIVAKUMAR, B. Chaos in Hydrology: Bridging Determinism and Stochasticity. Springer, 2017.

SIVAKUMAR, B. Chaos theory in hydrology: important issues and interpretations. J Hydrol, v. 227, n. 1–4, pp. 1–20, 2000.

SIVAKUMAR, B. Rainfall dynamics at different temporal scales: A chaotic perspective. Hydrol Earth Syst Sci, v. 5, n. 4, pp. 645–651, 2001.

SIVAKUMAR, B.; HARTER, T.; ZHANG, H. Solute transport in a heterogeneous aquifer: a search for nonlinear deterministic dynamics. Nonlinear Process Geophys, v. 12, pp. 211–218, 2005.

SIVAKUMAR, B.; JAYAWARDENA, A. W. An investigation of the presence of low-dimensional chaotic behavior in the sediment transport phenomenon. Hydrol Sci J, v. 47, n.3, pp. 405–416, 2002.

TONGAL, H.; BERNDTSSON, R. Phase-space reconstruction and self-exciting threshold modeling approach to forecast lake water levels. Stoch Environ Res Risk Assess, v. 28, n. 4, pp. 955–971, 2014.

TSONIS, A. A.; ELSNER, J. B.; GEORGAKAKOS, K. P. Estimating the dimension of weather and climate attractors: important issues about the procedure and interpretation. J Atmos Sci, v. 50, pp. 2549–2555, 1993.

VILLAR, R. E.; MARTINEZ, J. M.; ARMIJOS, E.; ESPINOZA, J. C.; FILIZOLA, N.; SANTOS, A.; WILLEMS, B.; FRAIZY, P.; SANTINI, W.; VAUCHEL, P. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000–2014). Comptes Rendus Geoscience, v. 350, n. 1–2, pp. 4-12, 2018.

WANG, Q.; GAN, T. Y. Biases of correlation dimension estimates of streamflow data in the Canadian prairies. Water Resour Res., v. 34, n. 9, pp. 2329–2339, 1998.

WILCOX, B. P.; SEYFRIED, M. S.; MATISON, T. M. Searching for chaotic dynamics in snowmelt runoff. Water Resour Res, v. 27, n. 6, pp. 1005–1010, 1991.

ZHOU, Y.; MA, Z.; WANG, L. Chaotic dynamics of the flood series in the Huaihe River Basin for the last 500 years. J Hydrol, v. 258, n. 100–110, 2002.

Published

2021-09-30

How to Cite

QUEIROZ, M. S. de .; CARVALHO, J. A. L. de. The Lower Solimões River from the Chaos Theory Perspective (Deterministic Chaos). Journal Geotemas, Pau dos Ferros, v. 11, p. e02112, 2021. DOI: 10.33237/2236-255X.2021.3193. Disponível em: https://periodicos.apps.uern.br/index.php/GEOTemas/article/view/3193. Acesso em: 23 nov. 2024.

Issue

Section

Articles